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May S. Al-Rabi 
Abstract:  
The purpose of this study is to implement and evaluate the security of the 
Keccak hash function in a Microprocessor without Interlocked Pipelines 
(MIPS) processor using Field Programmable Gate Arrays (FPGA). The design 
methodology involves selecting a set of instructions that are required to run 
the SHA-3 Keccak algorithm on the MIPS processor. The findings of this study 
demonstrate that the Keccak hash function can be efficiently implemented on 
a MIPS processor using FPGA technology. The research limitations include 
the fact that the study only focuses on the implementation of the Keccak hash 
function on a MIPS processor using FPGA, and does not consider other 
platforms or technologies. The practical implications of this study are that it 
provides a cost-effective solution for implementing secure hash functions on 
embedded systems that require low power consumption and high 
performance. The originality and value of this study lie in its contribution to 
the field of cryptography by demonstrating the feasibility of implementing 
secure hash functions on low-cost processors using FPGA technology. 
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Introduction 
The cryptographic hash function known as Keccak is the topic of this paper. Hash functions in 
cryptography are essential to today's modern cryptography and find usage in various practical 
applications. These applications include the verification of message integrity, the 
authentication of messages, and the safe storage of passwords. In cryptographic protocols, hash 
functions are utilized to protect the integrity of a message or to provide authentication by 
computing a short identifier for the message. This identity is referred to as a hash value, and 
inside the protocol, it serves as a representation. A cryptographic hash function can take an 
input of any possible length as long as it is finite, and it can produce an output of a size that has 
been set in advance. Due to the fact that the input domain is typically much bigger than the 
output domain, the functions in question have a mapping that is many-to-one in nature. As a 
direct result of this, it is impossible to prohibit the occurrence of two different messages with 
the same outcome from happening at the same time. As a consequence of this, for a hash 
function to be considered safe, it should be computationally difficult to find collisions between 
different hash values. At the moment, the hash algorithms that are employed the most 
commonly are SHA-1, SHA-256, and SHA-512, all of which have been given the stamp of 
approval by NIST. They are designed in accordance with the MD4 and MD5 design principles, 
and they are a component of many different standards. Over the course of the previous few 
years, considerable advancements in cryptanalysis have been accomplished, and 
vulnerabilities in a variety of functions have been discovered. Practical collisions have been 
shown to be possible with MD4 (Wang, et al., 2005a), MD5 (Wang, et al., 2005b), and SHA-0 
(Wang, et al., 2005c). These collisions have been demonstrated. The security bound is 
significantly lower than was anticipated (Wang, 2005d), despite the fact that the amount of 
computational work needed to build collisions for SHA-1 is still outside the realm of what is 
practically possible. It is theoretically possible to initiate attacks on reduced rounds, and actual 
instances of this happening in practice have been demonstrated (De Cannière, et al., 2007). As 
a result of this, there is a substantial amount of interest in the development of new secure hash 
algorithms. In this article, the design of the hash function Keccak in the MIPS processor 
architecture is discussed. Keccak was the submission in the SHA-3 competition that the 
National Institute of Standards and Technology (NIST) considered being the most successful 
overall. The acronym FPGA stands for field programmable gate arrays. It refers to a type of 
digital integrated circuit (IC) that has programmable customizable pieces of logic, and 
programmable interconnects between these blocks. Design engineers can configure (program) 
such gadgets to carry out a dizzying array of responsibilities. Many FPGAs can be 
reprogrammed on-site, where it is possible to carry out the programming process (De 
Cannière, et al., 2007). Because of the reprogrammable nature of FPGAs, they are ideally suited 
for usage in educational settings. This quality enables students to do as many iterations as 
necessary to rectify and improve the performance of their processor design. 
 
All data operations in a RISC architecture processor are performed on register data and often 
apply to the whole register's worth of data. Load and store operations are the only two 
operations that have any effect on memory. They move information between storage locations, 
such as memory and a register. This architecture is also known as load-store architecture since 
it allows load and store operations that load or store less than a complete 32-bit register (for 
example, a byte, which is 16 bits) (Hennessy & Patterson, 2012a). The number of different 
formats for instructions is quite low, and the majority of instructions are only available in a 
single size. Putting it into practice is thus made easier as a consequence of this. MIPS is an 
example of a general-purpose RISC architecture. MIPS stands for "microprocessor without 
interlocked pipeline steps," which describes the design of the MIPS microprocessor. A RISC 
processor having the capability of carrying out full instruction in a single cycle is referred to as 
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a single-cycle MIPS. The length of time required for each cycle is decided by the instruction that 
executes the most slowly. Pipelining is a technique for the construction of software in which 
the execution of a number of different instructions is performed in parallel with one another 
(Sweetman, 2007). As a direct consequence of this, pipelining may be achieved by partitioning 
the MIPS for a single cycle into a number of different parts. The term "stage" is used to refer to 
each individual component. Because of this, a pipelined MIPS with five stages allows for the 
execution of five instructions concurrently, with one instruction carried out in each stage. 
Because each stage needs just one cycle of the clock, the amount of speedup that may be 
accomplished by pipelining is generally equal to the number of stages in the pipeline (De 
Cannière, et al., 2007b). This is the situation when all conditions are perfect. 
 
MIPS Architecture 
An instruction set and some familiarity with registers are the two primary components that 
make up a CPU's architecture (De Cannière, et al., 2007). The architecture of a 32-bit MIPS 
processor is discussed in this section of the article. Instruction Set Architecture (ISA) is a term 
that refers to the actual instruction set that is accessible to the programmer. The ISA can be 
thought of as the dividing line between software and hardware (Hennessy & Patterson, 2012a). 
The following are the seven dimensions that make up the MIPS ISA: In terms of the Instruction 
Set Architectural (ISA), the MIPS processor is classified as a member of the General-Purpose 
Register (GPR) architecture family. In this particular architecture, the operands may take the 
form of registers or memory locations at any given time. Memory addressing: The MIPS 
memory model is byte addressed rather than word addressable since each data byte has its 
own address. This is in contrast to other memory models, which are word addressable. Other 
memory types, on the other hand, are word addressable. This is in contrast to that. The 8-bit 
(byte), 16-bit (half word), and 32-bit (word) operand sizes are all supported by MIPS 
(Hennessy & Patterson, 2012b). MIPS also supports the following sorts of operands. Operands 
have the potential to be constant values that are either stored in the instruction itself, in the 
registers, or in the memory (Hennessy & Patterson, 2012a). The phrase "operations" covers a 
wide range of topics, including data transport, arithmetic and logic, control, and floating-point 
operations (Hennessy & Patterson, 2012b). Because it is a simple architecture with an 
instruction set that can be pipelined with relative ease, MIPS is a good example of a RISC 
architecture that was used in 2011, and it is a representative example. Instructions for 
controlling the flow of control are supported by almost every instruction set architecture (ISA) 
(Page, 2009). These include conditional branches, unconditional jumps, calls to procedures, 
and returns from those procedures. PC-relative addressing is utilized by each branch, and the 
branch address is derived from an address field that is added to the Program Counter (PC). 
Encoding of the Instruction Set Architecture (ISA) Each and every MIPS instruction is 32 bits 
long, which makes instruction decoding a great deal less complicated. In the MIPS architecture, 
which makes use of 32-bit addresses, the addressing modes not only identify registers and 
constant operands but also represent the address of a memory object. In the MIPS architecture, 
which makes use of 32-bit addresses, the addressing modes not only identify registers and 
constant operands but also represent the address of a memory object. 
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Figure 1: Addressing modes of MIPS 

 
Each instruction execution in a Pipelined MIPS processor is split into five stages, making it 
possible for the processor to carry out up to five different instructions during a single clock 
cycle (Hennessy & Patterson, 2012b). Pipelined MIPS processors are classified as 5-stage 
pipelined processors. Therefore, the single-cycle datapath shown in Figure 2 must be divided 
into five parts, each of which is given a name that represents a specific phase in the execution 
of an instruction. The various phases include instruction fetches (IF), decoding instructions 
(ID), executing instructions (EXE), accessing memory (MEM), and writing results back (WR) 
(WB). The utilization of pipeline registers is essential to the successful implementation of 
single-cycle pipelined MIPS. These registers are used to partition the data path into the five 
sections IF, ID, EXE, MEM, and WB, and they are also responsible for storing the values that are 
required by instruction as it moves through the subsequent stages. Pipelined MIPS is the key 
to successfully implementing single-cycle pipelined MIPS. The stages determine the labels of 
the pipelined registers in MIPS that they separate (Valli, et al., 2012). Figure 2 shows the 5-
stages, pipelined MIPS processor with the following pipelined stages: 
 

 
Figure 2: The simple pipelined datapath with the control unit [8]. 
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1) Instruction fetches (IF): the content of the PC is read from memory to retrieve the 
instruction, and then the value of the PC is increased by 4 to point to the next instruction. The 
instruction, as well as the now-incremented PC, are both saved in the register for the IF/ID 
pipeline. 
2) Instruction decode (ID): this step involves decoding the instruction that is stored in the IF/ID 
register, after which the necessary operands are recovered and then delivered to the ID/EXE 
pipeline register. 
3) Execution (EX): either carries out the necessary operation or calculates an address by 
making use of the operands that have been taken from the ID/EXE pipeline register. The result 
is saved in the EXE/MEM pipeline register when it has been processed. 
4) Memory access (MEM): This stage is only utilized by lw or sw instructions that access the 
data memory for read or write using the address from the EXE/MEM pipeline register. During 
this stage, the data memory can be read from or written to. The MEM/WB pipeline register is 
loaded with data when the lw instruction is executed. 
5) Write back, or WB, occurs when the results from the MEM/WB pipeline register are written 
into the register file (Hennessy & Patterson, 2012b) (Kaur & Gulati, 2013). 
In a pipeline processor, the stage that operates at the slowest speed determines the clock rate, 
also known as the clock cycle period. The control signals that are valid for the single-cycle 
scheme are also valid for the pipelined scheme, as shown in tables 2-4 and 2-6. However, the 
pipelined scheme inherently requires sequencing, and the control signals that are generated in 
the decode stage must go with the instruction throughout the pipeline and waste up until the 
last stage, as shown in figure 3 (Robio, 2004). 
 

 
Figure 3: The control lines for the final three stages. 

 
Hash Architecture  
A family of hash functions known as Keccak is based on a construction known as the sponge, 
which allows the state to have a size b. (25; 50; 100; 200; 400; 800; 1600). It makes use of the 
Keccak-f permutation, as well as the padding scheme. Keccak[r; c; nr] is the notation for a 
particular instance of the Keccak cryptographic algorithm, where r denotes the rate, c is the 
capacity, and nr indicates the number of rounds. The Keccak algorithm uses the permutation f, 
which acts on a three-dimensional state and has elements in the F2 field (see Figure 4). The 
parameters for this condition are 5 by 5 by w, where w is the width (1; 2; 4; 8; 16; 32; 64). Using 
this method, each lane can be represented as a w-bit word (Karmani, et al., 2020) (Stinson & 
Paterson, 2017). Sponge construction is a method of operation that builds a function that 
accepts input of arbitrary size and output of arbitrary size. The input and output sizes can be 
chosen at will. It is based on a permutation with a fixed size, f, has a padding rule, and takes two 
parameters: the rate r and the capacity c. The sponge creation is done iteratively, and the 



JSR                                                                               Volume: 5, Issue: 1 Year: 2023 Page: 69-77 

 

74 

 

internal state S has the dimensions b = r + c. Initially, make use of the padding rule to partition 
the input m into blocks of the sizes r, starting with M0 and going up to Mn. The initial state will 
be set to S = (0.... 0), and the input will be processed through the phases titled Absorb and 
Squeeze in the following order. Figure 4 provides a high-level overview of the process that will 
be followed. When a random permutation is used, the sponge construction can be found 
(Pachghare, 2019) (Martino & Cilardo, 2020). 
 

 
Figure 4: The sponge construction accepts data of arbitrary length as input and 

computes output that is also arbitrary in length. The input is processed iteratively 
using a fix-sized invertible permutation denoted by f. 

 
Currently, four versions of the Keccak function family have been approved for the SHA-3 hash 
function standard: SHA3-224, SHA3-256, SHA3-384 and SHA3-512.in this paper, designs MIPS 
processors have only instruction that needs to design SHA3-256. The hardware design of a 32-
bit Hash MIPS processor by using VHDL, all combinational and sequential elements in the MIPS 
processor are designed separately as components in VHDL by using Xilinx ISE Design Suite 14.7 
software. Then these components are connected to produce the processor. The hardware 
behaviour of components is described by using VHDL code. 
 
Results 
This paper shows the behavioural simulation results which have been gotten from the Xilinx 
ISim simulator after executing the test programs for each VHDL processor design. Figure 5 
through 7 show screenshots of the simulation waveforms. In all of these figures, the first two 
rows depict the global clock and reset signal. The following rows are executed when the 
instruction is fetched from the instruction memory. These signals are: 
 
The pc [31:0] value: is used to index the instruction memory. The pcnext [31:0] value: is fed as 
input to the PC register. The instr [31:0] value: is an instruction indexed out of the instruction 
memory. The dataadr value: is used to index the data memory the srca [31:0] and srcb [31:0] 
values: that fed as inputs into the ALU unit, which operates in the execute stage. The aluout 
value: is used to take the result of ALU operations. The memwrite value: is used to control write 
data into data memory. The writedata value: is the data which write in data memory. The mem 
value: it is the Hash Message digest. From the implementation of hash Processor in ISE 14.7 by 
using VHDL language and testing the execution of all steps for SHA-3 processor is held for a 
plaintext such as "welcom" to produce a fixed 256-bit hash code" 3f0d883a 14b7a84b 
2ab42f75 ce9d695a 42f66a14 18641e16 ef6fed59 82acd8ca", which is completed at t=1030 
ns.The testing figure of the SHA-1 160-bits hash function is shown in Fig. 4.1. 
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Figure 5: SHA-3 is  completed at t=1030 ns. 

 

 
Figure 6. Data memory of the input "welcom". 

 

 
Figure 7. Power Consumption for the SHA-3 



JSR                                                                               Volume: 5, Issue: 1 Year: 2023 Page: 69-77 

 

76 

 

Table 1 shows the number of clocks, throughput, power and execution time of SHA-3. 
Additionally, table 2 summarizes the FPGA utilization used in SHA-3 Pipeline MIPS Processors. 
 

Table 1 Throughput and consumed power for different types of SHAs. 
Hash Time (ns) No. of clocks Throughput 

(Mbps) 
Power 
(Watt) 

SHA-3 1030 103 250 0.037 

 
Table 2: FPGA resource utilization. 

Logic Utilization  32-bit MIPS Processor 
Number of Slice Flip Flops 13 
Number of 4 input LUTs 3568 
Number of occupied Slices 1847 
Number of bonded IOBs 131 

 
Conclusions 
Hash function implementations on hardware is best than implementations on software since 
software implementations don't satisfy the power, throughput, speed, and security 
requirements of the complex modern communication systems which used today. In this paper, 
a hash processor for performing SHA-3 calculations are implemented, specified and analyzed 
using the hardware description language VHDL. The MIPS processor is chosen because it has 
simple instruction sets with simple decoding, easily understandable architecture and rich 
documentations. This design supports only instructions needed for this type of hash. It is easy 
to design ALU; it consists of gated and some multiplexers. It is necessary in this design to select 
the appropriate control signals to ensure that the instructions are going in the correct data 
path. 
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