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Abstract 
The climate affects maize production. Unpredictable rainfall timing, 
frequency, duration, character, and distribution, particularly during the 
growing season; rising temperatures exceeding the levels appropriate for 
maize production; and high incidences of pests and diseases all contribute to 
declining yields and increased food insecurity. The goal of the study was to 
find out how much smallholder maize production in Kitui and Laikipia 
counties was affected by changes in the weather. A questionnaire was used 
to collect demographic and socioeconomic information from 397 smallholder 
maize producers. The National Oceanic and Atmospheric Administration 
provided monthly temperature data in degrees Celsius derived from a 
combination of Global Historical Climatology Network gridded version 4 and 
Climate Anomaly Monitoring System datasets. The Centennial Trends version 
1.0 precipitation dataset provided monthly rainfall data in millimeters. The 
vulnerability index was created by combining the exposure, sensitivity, and 
adaptive capacity indices derived through factor analysis. Drought, famine, 
climatic changes, crop failure, and purchasing maize increased the 
vulnerability of smallholder maize production, whereas less frequent water 
fetching, increased maize yield, access to extension, input subsidies, fertilizer 
expenditure, and the number of social groups decreased vulnerability. 
According to the study, smallholder maize production in semi-arid lowland 
areas was more vulnerable to climate variability than in highland areas. The 
findings suggest that the national and county governments should monitor 
vulnerability indicators at the national, county, sub-county, and ward levels 
in order to inform the design and implementation of appropriate 
vulnerability-reduction programs. 
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1.      Introduction   
Agriculture is one of the industries that has suffered as a result of climate change. Goal 2 of the 
Sustainable Development Goals (SDGs) emphasizes the importance of promoting sustainable 
agriculture in order to achieve food security (United Nations, 2015). In the context of 
agriculture, vulnerability can be defined as the degree to which the agricultural system is 
exposed to, sensitive to, and adaptive to climate variability (Tao et al., 2011). Regardless, it is 
the primary source of food security. For example, maize is a staple food for a large proportion 
of the population, which could explain the 60% increase in maize cultivation area in Sub 
Saharan Africa (SSA) between 2007 and 2017(Santpoort, 2020). Climate change affects maize 
production. Depending on the temperature levels that affect evapotranspiration during the 
growing season, medium-maturity maize requires 500 millimeters to 800 millimeters of water 
(Food and Agriculture Organization, 2016). Most maize varieties require more than 1000 
millimeters of rain per year (One Acre Fund, 2015). The ideal temperature for maize 
production is between 18 and 20 degrees Celsius (Food and Agriculture Organization, 2015). 
Maize production in Kenya is primarily carried out during the two rainy seasons: long rain 
(March to May) and short rain (October to December) (Republic of Kenya (ROK), 2022). Floods, 
landslides, and mudslides could occur as a result of heavy rainfall. Floods contribute to water 
logging, soil erosion, and nutrient leaching, all of which affect soil stability, water holding 
capacity, hydrogen potential (pH), organic matter content, total nitrogen, and phosphorus 
(Brevik, 2013). This has an impact on the quality of soil ideal for maize production, resulting in 
increased fertilizer use to improve soil fertility. Crop failure, on the other hand, is caused by 
very low rainfall. Drought occurs when there is a prolonged lack of rainfall, which has a 
negative impact on food security. 
 
Temperature is also important in maize growth and development. High temperatures lower 
soil moisture content, causing crop loss (Rurinda et al., 2014; Classen et al., 2015). High 
radiation, in particular, increases water losses, lowering soil moisture and stagnating maize 
development in the lowlands, particularly during the early stages, whereas in the highlands, 
when soil moisture is sufficient, low light intensity reduces the rate of photosynthesis, 
restricting growth (International Institute of Tropical Agriculture, 1982). Climate change is 
also linked to an increase in agricultural pests and illnesses because it hastens the growth of 
disease-causing pathogens, pests, and insects (Pareek et al., 2017). As a result, crop yields may 
be reduced by 80 percent to 100 percent (Republic of Kenya, 2012; Makone et al., 2014). 
Furthermore, a growth in invasive weeds is related to an increase in atmospheric carbon 
dioxide levels, which causes climate shifts. Carbon dioxide concentrations rise, stimulating 
growth and development and, as a result, the geographical extension of invasive plants 
(Ramesh et al., 2017). Striga has been linked to agricultural losses of up to 90% in Busia, 
Bungoma, Siaya, Migori, and Kakamega (African Agricultural Technology Foundation, 2017). 
Temperatures in Kenya are expected to climb by 1.7 degrees Celsius by the 2050s and by 3.5 
degrees Celsius by the end of the century, according to global climate models (World Bank 
Group, 2021). Precipitation, on the other hand, is expected to be unpredictable and very erratic. 
Rainfall has recently been found to be less when it rains for a long time and more when it rains 
for a short time (Dutch sustainability unit, 2015). It is also predicted that brief showers will 
become more common between October and December, as will the frequency, length, and 
severity of intense rainfall events (World Bank Group, 2021). For example, frequent 
countrywide droughts have been forecast, affecting farmers and pastoralists in Kenya's east 
and north (Republic of the Netherlands, 2018). This would be devastating to maize production 
in Kenya, especially because 80 percent of the land area is already Arid and Semi-Arid Lands 
(ASALs), receiving just 200 to 700 millimeters of rain each year (Republic of Netherlands, 
2018). 
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Smallholders have low levels of human and physical capital, as well as significant levels of 
poverty, which limit their capacity to deal with the repercussions of climatic variability 
considerably more severely than other farmers (Kabubo-Mariara and Kabara, 2015). 
Furthermore, a reduction in agricultural output as a result of unfavorable climatic change 
exacerbates poverty among smallholders (IPCC, 2014). Climate variability affects numerous 
industries directly or indirectly, exacerbating the negative effects on agriculture. For example, 
the transportation sector contributes to greenhouse gas emissions but is also negatively 
impacted by climate change due to the destruction of infrastructure such as bridges, ports, 
roads, rails, and air networks, particularly during extreme weather events, disrupting supply 
chains for raw materials or food, among other things (Kenya Private Sector Alliance, 2014). 
 
Furthermore, smallholders were more likely to be impacted by illnesses caused by climatic 
variability, such as water-borne, vector-borne, and cardiovascular disorders, rendering them 
unable to carry out farming operations and requiring them to shift resources for treatment 
(IPCC, 2022). Smallholders' conditions may be made worse depending on where they live. 
Those who live in semi-arid and arid locations are more vulnerable than those who live in high-
potential areas since they are exposed to high temperatures for much of the year (Kalele et al., 
2021). Agriculture has a vital role, accounting for 75% of total employment and contributing 
the most to Kenya's GDP when compared to other sectors of the economy. 2022 (United States 
Agency for International Development; Republic of Kenya) However, climate variability, 
characterized by unpredictable timing, frequency, duration, character, and distribution of 
rainfall, particularly during the growing season, along with rising temperatures, weed 
infestations, and pest and disease incidents, among other issues, has an impact on yields and, 
as a result, food security in Kenya. Most empirical research on how vulnerable agriculture is to 
changes in climate has led to vulnerability indices at the regional, national, and household 
levels. This research has shown that different areas and families are affected in different ways 
based on their physical and economic characteristics. 
 
Most empirical research has utilized data on agriculture and farmers in general, which does not 
indicate the vulnerability of smallholder maize output. To address the research gaps 
highlighted and contribute to current information, new empirical studies evaluating the 
vulnerability of smallholder maize production in Kenya, disaggregating analyses on total 
exposure, sensitivity, and adaptive capacity, were required. The study's goal was to examine 
the amount of susceptibility of smallholder maize production to climatic variability in Kenya's 
Kitui and Laikipia counties using data from 397 smallholders. The study is crucial for 
policymakers at the national and county levels to understand the nature of vulnerability 
influencing smallholder maize production in order to drive policy and development aid 
priorities. 

2. Literature Review 
2.1. Studies on vulnerability 

Gbetibouo et al. (2010) investigated the sensitivity of agriculture to climate change in nine 
South African provinces using a vulnerability index comprised of 19 variables based on 
Principal Component Analysis. The study discovered that locations with a large concentration 
of small-scale subsistence farmers who produced with minimal technology and relied on 
rainfall were especially vulnerable to climate change. The study showed that in the most 
sensitive regions, minor climatic changes would impair subsistence farmers' livelihoods, but in 
the least vulnerable places, where exposure was substantial, their great adaptation ability 
would mitigate the unfavorable effects. The investigation was conducted at the subnational 
level, which may have missed variation in household agricultural operations, resource 
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endowments, and ecological considerations, among other variables. Furthermore, data at the 
subnational level include both big and small-scale farmers, yet vulnerability between the two 
kinds of farmers might vary greatly. 
 
Tajikistan's sensitivity to climate change and variability was examined by Heltberg and Bonch-
Osmolovkiy (2010) in both rural and urban regions. For the analysis, ten (10) agro-ecological 
zones and one (1) urban region were identified. Using equal weighted factors, the researchers 
created a vulnerability score based on exposure, sensitivity, and adaptive capability. The 
study's findings revealed that exposure, sensitivity, and adaptive capability differed 
significantly more independently than the composite vulnerability. The highlands had the most 
exposure, but also the most adaptive potential and medium sensitivity. Lowland regions were 
particularly vulnerable. The fundamental flaw of the study was the equal weighting of the 
exposure, sensitivity, and adaptive capacity components, despite the fact that the variables 
within each component had a different number of variables. This may skew the relative 
relevance of the components in the overall vulnerability index (Baptista, 2014). Antwi-Agyei et 
al. (2012) examined agricultural production susceptibility to drought at the national and 
regional levels in Ghana. The study's goal was to assess the risk of ten (10) Ghanaian areas. The 
study defined vulnerability as the sum of exposure and sensitivity less adaptive capability. 
According to the findings, vulnerability was mostly related with high exposure and sensitivity 
to drought. According to the study, insufficient adaptive capability owing to high poverty levels 
and limited capital assets increased susceptibility. 
 
Epule et al. (2017) took a similar method in developing a vulnerability index for Uganda that 
combined agroecological, meteorological, and socioeconomic factors in analyzing the national 
and geographical pattern of susceptibility of maize yields to drought. Each component of 
vulnerability was given its own sub-index, which was then combined to form the vulnerability 
index. The adaptation capacity was relatively good at the national level, and so the vulnerability 
score was low. The northern study sites had greater vulnerability indices than the southern 
study sites. The national exposure index was greater than the exposure indexes at the research 
locations. The study also discovered that the amount of sensitivity of maize explained 91 
percent of the changes in vulnerability, whereas exposure explained 92 percent. The more the 
exposure, the greater the susceptibility. The study also found that locations in the south had 
stronger adaptation capacity than those in the north, and that changes in adaptive capacity 
explained 88 percent of the changes in vulnerability. The study indicated that drought 
sensitivity and exposure increased with latitude, whereas adaptation capacity decreased at 
lower latitudes, and that both biophysical and social variables were important in influencing 
drought vulnerability of maize yields. Although the empirical methods employed by Antwi-
Agyei et al. (2012) and Epule et al. (2017) might be used to assess susceptibility for specific 
locations or systems, the data utilized included both big and small-scale food production. 
Furthermore, despite the fact that adaptive capacity had two variables and exposure and 
sensitivity each had one variable, they were all given similar weights, which may interfere with 
the overall value of the components in the total vulnerability (Fekete, 2011). Sisay (2016) used 
chosen environmental and socioeconomic factors to examine the susceptibility of agricultural 
families to climate change in the Dabat and West Belesa Districts of North Gondar, Ethiopia. 
The study examined the Livelihood Vulnerability Index for each District using the Livelihood 
Vulnerability IndexI-Intergovernmental Panel on Climate Change framework. The Index is 
derived by categorizing vulnerability Contributing Factors into exposure, sensitivity, and 
adaptive capability. The findings suggested that West Belesa was more exposed to the effects 
of climate change than Dabat District. As a result, the study indicated that social, economic, and 
natural variables had a significant impact on the vulnerability of farming households in rural 
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regions, which varied by location. Households exposed to the same degrees of unfavorable 
climate change impacts were vulnerable at varying levels depending on their adaptive 
potential. Although the data utilized in the study came from households, it was gathered from 
farmers in general. 
 
Masambaya et al. (2018) evaluated the susceptibility of maize production to climate change in 
key maize producing counties of Kenya's Rift Valley area (Trans Nzoia, Nakuru, Narok, and 
Uasin Gishu). Principal Component Analysis was used in the investigation. Vulnerability was 
defined as the result of exposure, sensitivity, and adaptive capability. According to the study's 
findings, Trans Nzoia was the least susceptible county because it was the least exposed, most 
sensitive, and had the best adaptation capacity, while Narok was the most vulnerable because 
it was the most exposed, least sensitive, and had the lowest adaptive ability. The study 
indicated that maize production in Narok County was more vulnerable to the negative effects 
of climate change than in Trans Nzoia County. Unlike Heltberg and Bonch-Osmolovkiy (2010) 
and Antwi-Agyei et al. (2010), the use of Principal Component Analysis permitted weighting of 
indicators, avoiding bias in the prominence of vulnerability components (2012). However, like 
in previous research, small and large-scale maize growers were merged. Epule et al. (2021) 
investigated the sensitivity of maize, millet, and rice yields to growing season precipitation and 
socioeconomic factors in Cameroon. The research concentrated on the national and sub-
national levels of analysis. Secondary data was used in the study. According to the study, rice 
had the highest exposure and sensitivity indices, as well as the lowest adaptive capacity index, 
resulting in the highest vulnerability, whereas millet had the highest adaptive capacity index, 
lowest sensitivity, and medium exposure index, resulting in the lowest vulnerability. In 
compared to the other two crops, maize exhibited medium exposure, sensitivity, and 
adaptation capability, resulting in medium vulnerability. At the sub-regional level, maize 
production in Northern Cameroon had the highest exposure index, sensitivity index, and lowest 
adaptive capacity index, resulting in the highest vulnerability index, whereas maize production 
in Southern Cameroon had the least exposure index, medium sensitivity index, and highest 
adaptive capacity, resulting in the lowest vulnerability index. According to the study, rice was 
the most vulnerable crop on a national basis, while maize in the southern region was the most 
vulnerable on a subnational scale. Furthermore, the study found an inverse link between 
adaptive capability and vulnerability at both the national and sub-national levels. The research 
revealed disparities in sensitivity across areas and crops. However, the study used equal 
weighting, despite the fact that the components of vulnerability had varying numbers of 
variables. 
 
2.2. Overview of literature 

The majority of the research used the indicator technique to assess vulnerability. Some studies, 
including Heltberg and Bonch-Osmolovkiy (2010), Epule et al. (2017), and Epule et al. (2021), 
used equal weights for the indicators used in the generation of exposure, sensitivity, and 
adaptive capacity sub-indices, resulting in unequal weighting of the dimensions of the sub-
indices in the overall vulnerability index because not all sub-indices had equal indicators. 
Masambaya et al. (2018) used sub-national data on maize producers in general in their study 
on the susceptibility of maize production to climate change in five maize-growing counties in 
Kenya's Rift Valley. 
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3.Research method  
3.1 Area of study 
The research was carried out in Kitui and Laikipia counties, which are located in lowland and 
highland zones, respectively. Farmers cultivating maize on 5 acres or less were deemed 
smallholders and were thus chosen for the research.  

3.1.1. Kitui County 
Kitui County is divided into eight sub-counties: Kitui Central, Kitui Rural, Kitui South, Kitui 
West, Kitui East, Mwingi Central, Mwingi North, and Mwingi West, as well as 40 Wards and 247 
settlements (Republic of Kenya, 2018a). The population was estimated at 1,136,187 people 
(Republic of Kenya, 2019). The absolute poverty rate was projected to be 47.5 percent, higher 
than the national average of 36.1 percent, while the food poverty rate was estimated to be 39.4 
percent, higher than the national average of 32 percent (Republic of Kenya, 2018a). Agriculture 
contributes to food production, employment, and a source of income. The annual rainfall 
ranges between 500 and 1050 millimeters with a 40 percent predictability, while the lowest 
and highest temperatures vary from 22 to 28 degrees Celsius and 28 to 32 degrees Celsius, 
respectively (Oremo, 2013). Upper Midland comprises nine (9) agro-ecological zones upper 
midland 3, 3-4 suitable for coffee, upper midland 4 suitable for sunflower, maize, and pigeon 
peas; lower midland 3 and 4 suitable for cotton, lower midland 5 suitable for livestock, 
sorghum, fodder, and millet; lower midland 6 and inner lowland 6 suitable for ranching, and 
inner lowland 5 suitable for livestock and millet production (Republic of Kenya, 2018b). 
Despite the fact that a significant area (77,551 ha) was set aside for maize growing, the yearly 
output was 10,858 metric tons (Republic of Kenya, 2018a). 
 

3.1.2. Laikipia County 
Laikipia County is split into five administrative sub-counties: Laikipia Central, Laikipia East, 
Laikipia North, Laikipia West, and Nyahururu, as well as 15 Wards (Republic of Kenya, 2018b). 
The population of Laikipia County was 518,560 people (Republic of Kenya, 2019). The absolute 
poverty rate was projected to be 46%, compared to the national average of 36%, while the food 
poverty rate was estimated to be 24.2 percent, compared to the national average of 32 percent 
(Council of Governors and Kenya Institute of Policy, Research, and Analysis, 2020). Agriculture 
employs more than 60% of the global population. The yearly rainfall ranges from 400 to 750 
millimeters, while the average annual temperature ranges from 16 to 26 degrees Celsius 
(Republic of Kenya, 2018b). Upper highland 2 is suitable for wheat and pyrethrum, upper 
highland 3 is suitable for wheat and barley, lower highland 2 is suitable for wheat, maize, and 
pyrethrum, lower highland 3 is suitable for wheat, maize, and barley, lower highland 4 is 
suitable for cattle, sheep, and barley, lower highland 5 and 6 are suitable for ranching, upper 
midland 5 is suitable for livestock and sorghum, and upper (Jaedzold et al., 2010). The most 
widely grown crop is maize, which accounts for 51% of total crop area (Republic of Kenya, 
2018b).  
 
3.2. Data types and sources 
A cross-sectional study approach was utilized, using data from smallholders obtained 
throughout the 2017 long rain growing season (March to August) to aid in the assessment of 
the vulnerability of smallholder maize output. Monthly temperature and rainfall data from 
1960 to 2017 were collected online. Temperature data in degrees Celsius were taken from 
NOAA, while monthly rainfall data in millimeters were obtained from Dryad's Centennial 
Trends Greater Horn of Africa precipitation dataset version 1.0. (2018). The questionnaire was 
primarily used to gather data on socioeconomic aspects in order to determine smallholders' 
attitudes, knowledge, perception, traits, views, conduct, and facts. A multistage sampling 
procedure was used. Respondents from each sub-county were grouped based on Wards before 
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being chosen using simple random sampling. Athi, Mutomo, Ikutha, Ikanga, and Kanziko from 
Kitui South Sub-County; Yatta Kwa Vonza, Kanyangi, Kisasi, and Mbitini from Kitui Rural; 
Kyagwitha West, Kyagwitha East, Miambani, and Mulango from Kitui Central; Mwingi Central, 
Mui, Waita, Kivou, Nguni, and Nuu  

Derivation of exposure, sensitivity, adaptive capacity and vulnerability indices 

The amount of susceptibility of smallholder maize production to climatic fluctuation was 
examined using factor analysis. The variables utilized to calculate the vulnerability index (V i) 
in this study (exposure, sensitivity, and adaptive capacity) were derived from a combination of 
factors for each component. Because variables were measured in various units, the following 
method was used to standardize them for comparability: 

𝑍𝑖 =  ∑𝑚
𝑖=1 (𝑧𝑖 − 𝑧)/𝑧𝑚𝑎𝑥 − 𝑧𝑚𝑖𝑛 …………………………………………................1 

 
Where 𝑧 is the mean of 𝑧𝑖 across smallholders and 𝑧𝑚𝑎𝑥 is maximum value of 𝑧 while 𝑧𝑚𝑖𝑛 is the 
minimum value of 𝑧.  
 
The common factors were written as a linear combination of the following variables, which 
reflect the key components of vulnerability: 
 

𝐹𝑗 = 𝛽1𝑧1 + 𝛽2𝑧2 + 𝛽3𝑧3 + ⋯ + 𝛽𝑚𝑧𝑚 + 𝜇𝑗………………………………2 

 
Where 𝐹𝑗  represents the first common factor based on the variables representing exposure, 

sensitivity or adaptive capacity, z represents the respective independent variables associated 
with the factor, β represents the factor loading while µ represents the proportion of variance 
not shared between the factor and the respective variable. The square of the coefficient (β) 
produced the proportion of variance accounted for by the common factor known as the 
EigenValues (Field, 2009). The solution for equation 2 was rotated to ensure that higher 
loadings were on the first common factor. Higher loadings on the first common factor ensures 
that it provides the greatest amount of information from all the variables (Taherdoost et al., 
2014). Orthogonal rotation was preferred since it ensures factors are uncorrelated (Goldberg 
and Velicer, 2006). Orthogonal rotations are replicable in future samples as they reduce 
sampling error variance while oblique rotations are less parsimonious and tend to increase 
sampling error variance (Kimani, 2019). 
 
Factor loadings were used to calculate the exposure, sensitivity, and adaptive capacity indices 
(Nelson, 2007). The factor loadings were used to produce the regression coefficient, which was 
then multiplied by the actual variable values to obtain the indices for each smallholder 
(Nelson,2007). The following are the formulae for each smallholder's exposure, sensitivity, and 
adaptive capacity indices: 

 
𝑉𝐶𝑖 = 𝛽1𝑥1 + 𝛽2𝑥2 + 𝛽3𝑥3 + 𝛽4𝑥4 + ⋯ … … … + 𝛽𝑛𝑥𝑛………………3 
 
Where 𝑉𝐶𝑖  represents respective vulnerability component indices while  𝛽  represents the 
standard regression coefficients (Nelson, 2007). A positive factor loading for variables 
measuring exposure, sensitivity and adaptive capacity imply that the respective variables 
increase exposure, sensitivity or adaptive capacity. On the other hand, a negative factor loading 
for variables measuring exposure, sensitivity or adaptive capacity imply that the respective 
variable decreases exposure, sensitivity or adaptive capacity. 
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The vulnerability index was computed by combining exposure, sensitivity and adaptive 
capacity indices. A similar empirical model was used by Epule et al., 2017; Gbetibouo et al., 
2010; Antwi-Agyei et al., 2012; Epule et al., 2021 and Mckonen and Berlie, 2021. Vulnerability 
index based on exposure, sensitivity or adaptive capacity indices was derived for each 
smallholder as follows: 

 
𝑉𝑖 = ∑𝑛

𝑖=1 {(𝐸𝑖  +  𝑆𝑖) −  𝐴𝐶𝑖}.......................................................................... 4                                    
 

Where 𝑉𝑖 is the vulnerability index for smallholder 𝑖, 𝐸𝑖 is the exposure index for smallholder 𝑖, 
𝑆𝑖 is the sensitivity index for smallholder 𝑖, 𝐴𝐶𝑖  is the adaptive capacity index for smallholder 𝑖. 
The exposure index was generated from the following variables: rainfall anomaly, temperature 
anomaly, drought occurrences, famine occurrences, occurrences of crop pests and diseases, 
irrigation, climate changes and knowledge of soil type. The sensitivity index was generated 
from the following variables: frequency of fetching water, maize yield, crop failure, age, maize 
shortage and buy. Adaptive capacity index was generated from the following variables: 
expenditure on fertilizers, expenditure on certified seeds, education, access to extension 
services, input subsidies, involvement in social institutions and adaptation. The vulnerability 
index was classified into lowest, middle and highest tercile. The tercile with most smallholders 
was used in determining the extent of vulnerability. Extent of vulnerability between the two 
counties was based on comparison of the distribution of smallholders across the terciles and 
comparison of the vulnerability index of the median smallholder. Stata software was used in 
data analysis. 

4. Results and Discussions 
The results of the study were based on vulnerability analysis based on equation 1-4 in section 
3. Prior to data analysis, diagnostic tests was undertaken as explained below:  

4.1 Diagnostic tests  
The sphericity test of Bartlett was carried out. The test determines Kaiser-Meyer-Olkin (KMO) 
sampling adequacy, or if the distribution of values in the sample is acceptable for factor 
analysis (Taherdoost et al., 2014). A KMO greater than 0.5 and close to 1 suggests a good 
match (Taherdoost et al., 2014).Table 1 summarizes the findings. 

 
Table 1: Results of the Bartlett’s test of sphericity 
 

 Exposure  Sensitivity  Adaptive capacity  
KMO    0.53              0.61 0.63 
Chi-square                    189.956 84.86 97.569 
p-value                                0.000 0.000 0.000 
Determinant of correlation 
matrix 

0.616 0.806 0.780 

 
Source: survey data 
 

   

Table 1 shows that the KMO conditions for conducting factor analysis were met (Taherdoost et 
al., 2014). In addition, the test compares the correlation matrix against a matrix of zero 
correlations to determine if the correlation matrix used in component analysis is an identity 
matrix (Taherdoost et al., 2014). A rejection of the null hypothesis implies that the correlation 
matrix was not produced from a population with zero correlations, implying that the link 
between variables is appropriate (Taherdoost et al., 2014). In all cases, the null hypothesis was 
rejected at the 1% level of significance, meaning that the observed correlation matrix did not 
come from a population with zero correlation (Taherdoost et al., 2014). Furthermore, the 
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determinant of the correlation matrix was determined to be larger than 0.00001, meeting the 
condition for factor analysis (Field, 2009). 

4.2. Results of factor analysis 
Factor analysis was used to determine the extent to which smallholder maize output is 
vulnerable to climatic fluctuation. Section 3's Equations 2 and 3 were solved to get the factor 
loadings and standard regression coefficients, respectively (Field, 2009; Nelson, 2007). The 
findings are shown in Table 2: 
 

Table 2    
Results of factor analysis    
Variables Factor loading Standard regression 

coefficient 
Significance  

Exposure     
rainNorm 0.0284 0.0397 Insignificant  
tempNorm   -0.0774      -0.00536     Insignificant  
cropests_diseases1 0.1628 0.02319 Insignificant  
famine 0.6825 0.39075 Significant 
drought 0.6216 0.29721 Significant  
know_soiltype 0.0193 0.00525 Insignificant  
irrigation 0.0425 0.02249 Insignificant  
clim_changes 0.6134 0.34403 Significant 
Sensitivity     
yieldNorm -0.321 -0.14658 Significant 
crop_failure1  0.441  0.21954 Significant 
ageNorm -0.228 -0.10755 Insignificant 
maize_period 0.1243  0.06402 Insignificant 
water_freq1      -0.5187 -0.28046 Significant 
buy 0.6145  0.37539 Significant 
Adaptive capacity     
exten_access 0.5843  0.3255 Significant 
edu1   -0.0237    -0.01228 Insignificant 
inputSubsidies 0.5456  0.3024 Significant 
expCertSeNorm 0.2267  0.06652 Insignificant 
expfertNorm 0.3955  0.17145 Significant 
NsocigrpNorm 0.4903  0.24475 Significant 
    
Eigenvalue exposure =1.31276 
Eigenvalue sensitivity= 1.01163 
Eigenvalue adaptive capacity=1.08789 
Total observations=397   
(Factor loading greater than 0.30 is statistically significant) 
Source: Survey data 
 

 
Table 2 shows that the first factor was utilized to calculate the exposure, sensitivity, and 
adaptive capacity index (Taherdoost et al., 2014). Variables with factor loadings larger than 0.3 
for a sample size of at least 350 are deemed statistically significant to aid analysis (Hair et al., 
2006). The following are the findings of factor analysis for variables with substantial factor 
loading in relation to vulnerability components: 
 
Exposure  
Drought, hunger, and climate changes were statistically significant and correlated positively 
with the component explaining exposure. Famine dramatically boosted the exposure index, as 
predicted by the Organization for Economic Cooperation and Development, which predicts that 
lower-income nations will have food deficiencies of more than half the quantities necessary by 
2025. (Balasubramanian, 2018). Poor storage may cause maize losses, as shown by Midega et 
al. (2016), who discovered that farmers lost roughly 40% of stored grain owing to insect and 
pest infestations. According to FAO et al. (2018), poor yields, agricultural revenue losses, and 
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food price surges increase susceptibility to food availability, access, and stability. This finding 
shows that activities such as properly preserving corn during surplus for consumption during 
famine might help to mitigate the negative effects of famine. Famine struck a high proportion 
of the sample's smallholders. 
 
It was also shown that dryness considerably raised the exposure index. Adepetu and Berthe 
(2007) discovered that additional drought events enhanced exposure to climate change and 
related to asset loss, hence increasing vulnerability. Drought damages maize reproductive 
stages, resulting in yield loss (Aslam et al., 2015). Drought is expected to become more 
widespread and severe in regions where it already exists, thereby increasing the number of 
people exposed by 9 percent to 17 percent by 2030. (Hallegatte et al., 2015). The findings show 
that developing coping strategies such as early warning information and improving access to 
water might help to mitigate the negative effects of drought. The United Nations Convention to 
Combat Desertification (2022) recommends enhancing communities' capacity to foresee, 
respond to, and recover from drought in an effective and timely manner. Mukherjee and Mishra 
(2018), on the other hand, warn that man-made infrastructure, such as dams and reservoirs 
built to increase water availability, may create hydrological drought. Climate change has also 
greatly boosted the exposure index. Late or early beginning of rainfall is one of the recognized 
climatic shifts that has enhanced the vulnerability of maize output to climate variability 
(Bedeke et al., 2018). It is important to note that the beginning and conclusion of the growing 
season vary by area, making focused understanding of the best timing for smallholder maize 
production critical (Reidsma and Ewert, 2008). Pickson and He (2021) discovered that 
unpredictability of rainfall patterns increased susceptibility to climatic variability. In Laikipia 
County, the unpredictability of the beginning of rainfall and the length of the growing season, 
as well as moisture stress, were assessed to increase sensitivity to climatic variability (Ministry 
of Agriculture, Livestock, Fisheries and Cooperatives, 2017). These findings show that 
providing climatic information at the start of each cropping season and during the season might 
help reduce the negative impact of exposure on smallholder maize output. 
 
Sensitivity 
Crop failure, maize yield, water frequency, and purchase were all statistically significant 
sensitivity factors. The data reveal that purchasing maize considerably boosted sensitivity. 
Smallholders, particularly the impoverished, are far more exposed to price shifts than non-poor 
people (Hallegatte et al., 2015). Zelingher et al., (2021) discovered that a slight decrease in 
Northern American maize output enhanced the chance of a rise in worldwide maize prices. 
Crop failure also considerably enhanced sensitivity. Crop failure was significant because a high 
proportion of the sample's smallholders had experienced it. Crop failure is caused by low soil 
moisture due to delayed rains, highlighting the importance of adjusting cropping dates (Bedeke 
et al., 2018). Growing drought-tolerant maize cultivars might minimize sensitivity, according 
to Simtowe et al. (2019), who discovered that crop failure was reduced by 30% in Uganda. The 
findings point to the need for coping techniques that lower the susceptibility of smallholder 
maize output to climatic variability. Increases in maize production, on the other hand, 
considerably lowered sensitivity. The outcome is plausible given that smallholders in both 
areas were heavily reliant on maize. In the Czech Republic, Maitah et al. (2021) discovered a 
negative association between maize yield and water shortage, reflecting higher sensitivity. 
Furthermore, Mulungu and Ng'ombe (2019) discovered that temperatures of 35°C and a 
modest drop in rainfall can lower maize output by 9%, even for varieties that perform well in 
other biophysical environments. Furthermore, the CERES-maize model predicts that the 
change in maize yield owing to climate change in Sub-Saharan Africa by 2050 might be as low 
as 5% and as high as 25% (Mulungu and Ng'ombe, 2019). Srivastava et al. (2021) predicted an 
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increase in maize yield for Eastern India under rainfed circumstances for the periods (2021-
2050) and (2051-2080), with the increase for the period 2051-2080 being less than the 
increase for the period 2051-2050. Maize output losses were anticipated to be greater under 
irrigation circumstances from 2051 to 2080. (Srivastava et al., 2021). The discovery implies 
that irrigation with rainwater captured water might produce higher yields than water from 
other sources. The weekly frequency of collecting water, on the other hand, considerably 
lowered sensitivity. This means that smallholders with little water storage capacity must 
collect water often and are more prone to face water shortages, particularly during dry seasons, 
owing to their high sensitivity. This is backed by research that discovered that a lack of water 
related to heightened sensitivity (Sisay, 2016). The most vulnerable areas were those that were 
primarily reliant on rainfed agriculture (Gbetibouo et al., 2010). This emphasizes the necessity 
for other water sources to sustain maize cultivation. 
 
Adaptive capacity  
Access to extension, input subsidies, fertilizer expenditure, and the number of social groups 
were all statistically significant factors in the component explaining adaptive capability. Access 
to extension substantially boosted adaptive ability. Because smallholders are instructed on 
better agronomic methods, which promote greater maize output, the result was as predicted. 
According to the Ministry of Agriculture, Livestock, and Fisheries (2017), farmers who live 
distant from extension staff are more likely to lose out on relevant and up-to-date farming 
knowledge. Other research has also shown the significance of extension services (Opiyo et al., 
2014; Chepkoech et al., 2020). Input subsidies also considerably improved adaptive capacity. 
This was predicted since input subsidies reduce the cost of maize production, increasing 
capacity to produce more maize. Subsidies for inputs like as pesticides, fertilizers, and seeds 
might be supplied (Searchinger et al., 2020). Previous research (Epule et al. (2017); Antwi-
Agyei et al. (2012) discovered that impoverished families could not afford sufficient amounts 
of input to support maize growing, limiting their ability to cope with the effects of climatic 
variability. As a result, providing input subsidies might be crucial in improving adaptive 
capability. According to Searchinger et al. (2020), the influence of input subsidies to higher 
maize output was small. This was due to larger-scale farmers receiving greater assistance than 
small-scale farmers. The findings indicate the need of making agriculture inputs more 
accessible. 
 
The findings also show that increasing the number of social groups considerably boosted 
adaptive ability. This was supported by Pickson and He (2021), who discovered that farmers 
who belonged to organizations were better able to adapt to climate change. Social groupings 
are essential for learning, resource pooling, and information exchange. Furthermore, previous 
research (Antwi-Agyei et al. (2012); Opiyo et al. (2014); Chepkoech et al. (2020)) suggested 
that non-governmental and government institutions and policies promoted adaptive capacity, 
supporting the positive relationship between adaptive capacity and input subsidies, extension 
access, and the number of social groups. Enhanced fertilizer spending increased adaptive 
capacity considerably. This indicates that fertilizer was an important input in maize 
production. This finding suggests that increasing the usage of fertilizer, whether organic or 
inorganic, might improve smallholders' adaptive ability. According to Sigaye et al. (2020), 
combining organic and inorganic fertilizer enhances soil characteristics, resulting in greater 
maize yields and higher economic returns. 

Mean exposure, sensitivity, adaptive capacity and vulnerability indices  
The average exposure, sensitivity, and adaptive capacity indices obtained from equation 3 were 
estimated for Laikipia and Kitui County. The vulnerability index was then created by 
integrating the exposure, sensitivity, and adaptive capacity indices using equation 4. The 
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exposure, sensitivity, and adaptive capacity indices were derived using differential weighting 
of variables, but the aggregation of these components to the overall vulnerability index used 
equal weighting (Baptista, 2014). Table 3 displays the average exposure, sensitivity, adaptive 
capacity, and vulnerability indices for each of the two counties, as well as for both counties 
combined: 

 
Table 3 

Exposure, sensitivity, adaptive capacity and vulnerability indices 

 Description   Kitui Laikipia Combined 

Mean exposure index 1.299827 1.236506 1.28021 
Mean sensitivity index 0.576215 0.469995 0.54331 

Adaptive capacity index 0.377363 0.499167 0.4151 

Vulnerability Index 1.498678 1.207334 1.40841 

 
Lowest tercile  Frequency  85 48 133 

Percentage  31 39 33.50 
Minimum vulnerability index (0.77587) (0.56949) (0.7758737) 
Maximum vulnerability index 0.987944 1.003853 1.003853 

Middle tercile  Frequency 82 50 132 
Percentage  30 41 33.25 
Minimum vulnerability index 1.016638 1.008913 1.008913 
Maximum vulnerability index 1.742728 1.741506 1.742728 

Highest 
tercile  

Frequency 107 25 132 
Percentage  39 20 33.25 
Minimum vulnerability index 1.773481 1.749989 1.749989 
Maximum vulnerability index 3.928847 2.898821 3.928847 

 
50th 

percentile 
Median smallholder 1.513331 1.192464 1.38807 

 
Source: urvey data 

 

Table 3 shows that exposure contributed the most to vulnerability as compared to sensitivity 
in Laikipia, Kitui, and the combined results for the two counties. Furthermore, the average 
adaptive capacity index for Kitui County and the two counties combined was the lowest of the 
three vulnerability components. However, the sensitivity index for Laikipia County was the 
lowest of the three indices. Furthermore, Kitui County's mean vulnerability index was greater 
than the combined sample and much higher than Laikipia County's mean vulnerability index. 
Laikipia County's mean vulnerability index was lower than the combined sample. The 
vulnerability indices were divided into three terciles: lowest, middle, and highest. The results 
demonstrate that the majority of smallholders in Kitui County were in the highest tercile, 
whereas the lowest proportion of smallholders were in the highest tercile in Laikipia County. 
Laikipia County has the greatest number of smallholders in the middle tercile. Furthermore, 
the vulnerability index for the median smallholder in Kitui County was greater than the 
vulnerability index for the median smallholder in the whole sample, as was the vulnerability 
index for the median smallholder in Laikipia County. According to the findings, a substantial 
number of smallholders in Kitui County, which is located in the lowlands, were more 
susceptible than smallholders in Laikipia County, which is located in the highlands. According 
to the data in Table 3, vulnerability was impacted by exposure far more than sensitivity and 
adaptive capability. Although adaptive capacity might reduce susceptibility, it was extremely 
low in Kitui County, exacerbating vulnerability. Overall, the bad effects of exposure were less 
in Laikipia County because it had a higher score for its ability to adapt and a lower score for its 
sensitivity index. 
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The conclusion that smallholders in Kitui County were more sensitive than smallholders in 
Laikipia County was consistent with Tessema and Simane's (2019) findings that lowland 
regions had higher exposure and sensitivity but limited adaptation ability. Heltberg and Bonch-
Osmolovkiy (2010) came to the same conclusion that lowland regions were more susceptible 
than highland ones. Although the findings of Heltberg and Bonch-Osmolovkiy (2010) that 
highland regions had the best adaptation ability and medium sensitivity were similar to the 
current study, the findings suggesting highland regions were more exposed contradicted the 
current study. Masambaya et al. (2018) validated the findings that lowland areas were more 
vulnerable than highland areas and that highland areas were the least exposed and had the 
greatest adaptation potential. The increased sensitivity of smallholders in Kitui County 
compared to Laikipia County may be explained by the higher probability of crop failure, which 
may increase their vulnerability to high prices when purchasing maize to alleviate maize 
shortages (Hallegatte et al., 2015). Furthermore, Epule et al. (2017) discovered that locations 
with families unable to invest in agriculture inputs had limited adaptation capacity, which 
supports the findings for Kitui County, where input investment was substantially lower than in 
Laikipia County. Gbetibouo et al. (2010) observed that places with higher adaptation abilities 
were better-resourced and hence less vulnerable, whereas areas with high exposure were 
mostly situated in extremely degraded land areas. The Ministry of Agriculture, Livestock, 
Fisheries, and Cooperatives (2021) found that farmers in lowland regions were more sensitive 
to climatic variability due to increased exposure to drought, heat stress, and moisture stress. 
Reidsma and Ewert (2008) discovered that places with little water supply, such as Kitui County, 
will be unable to deal with increased exposure. Furthermore, Kitui County has a lower Human 
Development Index (0.481) than Laikipia County (0.574). (Republic of Kenya, 2018a and 
2018b). Furthermore, Kitui County has a greater level of poverty than the national average 
(Republic of Kenya, 2018a). The findings show that improving the adaptive capability of 
smallholder maize growers might help reduce levels of vulnerability. 

Conclusion and Policy Implications 
This study looked at how vulnerable smallholder maize production is to climate change in Kitui 
and Laikipia counties. Primary data on demographic and socioeconomic factors were gathered 
directly from smallholder maize growers throughout the 2017 long rainy growing season 
(March to August). Temperature data in degrees Celsius were taken from NOAA, while monthly 
rainfall data in millimeters were obtained from Dryad's Centennial Trends Greater Horn of 
Africa Precipitation dataset version 1.0. (2018). 
 
In Kitui and Laikipia counties, factor analysis was used to assess the sensitivity of smallholder 
maize production to climatic variability. The vulnerability indices for Laikipia and Kitui 
counties, as well as the combined index for the two counties, were calculated using exposure, 
sensitivity, and adaptive capacity indices. The findings revealed that exposure contributed the 
most to susceptibility in each county and in both counties together. The study also showed that 
smallholder maize growers in semi-arid lowland areas were more susceptible than 
smallholders in highland areas. This conclusion is supported by the fact that Kitui County has 
a greater proportion of smallholders in the top tercile than Laikipia County, and the median 
smallholder in Kitui County has a substantially higher vulnerability index than the median 
smallholder in Laikipia County and the whole sample. 
 
This study shows that smallholder maize output is sensitive to climate change. This 
vulnerability is expected to worsen food insecurity in Kenya, necessitating concerted initiatives 
aimed at minimizing it. Smallholders require assistance from the government at both the 
national and county levels, including input subsidies and improved water supplies. This is 
because drought, hunger, crop failure, and buying maize were key factors affecting exposure 
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and sensitivity, whereas maize yield and a lower frequency of fetching water lowered 
sensitivity. Fertilizer investment, on the other hand, boosted adaptive capability. Furthermore, 
social groups should be developed to improve learning as well as a platform via which the 
government or donor agencies may channel support to smallholders to boost adaptive ability. 
 
The current study adds to our understanding of smallholder maize production's vulnerability 
to climate variability and confirms the theoretical underpinnings that, while different groups 
or individuals may be exposed to similar levels of climate variability, the consequences may 
differ due to differences in sensitivity and adaptive capacity. The current study's findings 
focused on analysis at a local scale, with smallholders with 5 acres of land or fewer chosen to 
determine sensitivity to climatic variability, which may differ from vulnerability in large-scale 
maize production. Furthermore, the current study chose two semi-arid counties, one in the 
highlands and the other in the lowlands, and found disparities in susceptibility despite both 
being in semi-arid environments. Furthermore, factor analysis was used to ensure distinct 
weighting of indicators within each component in order to avoid bias in the relevance of each 
component to the overall vulnerability score. The study also delved into further detail to 
examine the variables that had a significant impact on the exposure, sensitivity, and adaptive 
capacity indices, as well as the vulnerability index. 
 
The goal of this study was to find out how sensitive smallholder maize production is to changes 
in climate and how well it can adapt in certain Kenyan counties. The study focused on 
smallholder maize cultivation, and the findings may not be applicable to large-scale maize 
production. Furthermore, the research sites were mostly semi-arid, so the results may not be 
generalizable to high-potential areas. More studies should be done to compare the sensitivity 
of large-scale maize production to the vulnerability of smallholder maize production. Further 
study might be conducted to examine the susceptibility of maize production in high- and low-
potential locations. 
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